
Fediversity Implementation and planning
Actors

• Maintainers

The group developing and maintaining this project. We are creating
the deployment workflows and service configurations, and curate changes
proposed by contributors.

• Developers

People with the technical background to engage with our work, and may
contribute back, build on top of, remix, or feel inspired by our work to
create something better.

• Hosting provider

They provide and maintain the physical infrastructure, and run the software
in this repository, through which operators interact with their deployments.
Hosting providers are technical administrators for these deployments, en-
suring availability and appropriate performance.

We target small- to medium-scale hosting providers with 20+ physical
machines.

• Operator

They select the applications they want to run. They don’t need to own
hardware or deal with operations. Operators administer their applications
in a non-technical fashion, e.g. as moderators. They pay the hosting
provider for registering a domain name, maintaining physical resources,
and monitoring deployments.

• User

They are individuals using applications run by the operators, and e.g. post
content.

Glossary
• Fediverse

A collection of social networking applications that can communicate with
each other using a common protocol.

• Application

User-facing software (e.g. from Fediverse) configured by operators and used
by users.

• Configuration

A collection of settings for a piece of software.

1

https://en.wikipedia.org/wiki/Fediverse


Example: Configurations are deployed to VMs.

• Provision

Make a resource, such as a virtual machine, available for use.

• Deploy

Put software onto computers. The software includes technical configuration
that links software components.

• Migrate

Move service configurations and deployments (including user data) from
one hosting provider to another.

• Run-time backend

A type of digital environment one can run operating systems such as NixOS
on, e.g. bare-metal, a hypervisor, or a container run-time.

• Provider

An interface against which we deploy to a run-time backend.

• Provider configuration

A configuration that specifies resources made available to deploy to and
how to access these.

• Resource

A resource is any external entity that we need for our set-up This may
include e.g. hypervisors, file systems, DNS entries, VMs or object storage
instances.

Technologies used
This is an incomplete and evolving list of core components planned to be used in
this project. It will grow to support more advanced use cases as the framework
matures.

Nix and NixOS

NixOS is a Linux distribution with a vibrant, reproducible and security-conscious
ecosystem. As such, we see NixOS as the only viable way to reliably create a
reproducible outcome for all the work we create.

Considered alternatives include:

• containers: do not by themselves offer the needed reproducibility

2

https://nixos.org/
https://repology.org/repositories/graphs
https://reproducible.nixos.org/
https://tracker.security.nixos.org/


Proxmox

Proxmox is a hypervisor, allowing us to create VMs for our applications while
adhering to our goal of preventing lock-in. In addition, it has been packaged for
Nix as well, simplifying our requirements to users setting up our software.

Considered alternatives include:

• OpenNebula: seemed less mature

Garage

Garage is a distributed object storage service. For compatibility with existing
clients, it reuses the protocol of Amazon S3.

Considered alternatives include:

• file storage: less centralized for backups

Architecture
At the core of Fediversity lies a NixOS configuration module for a set of selected
applications.

• We will enable using it with different run-time environments, such as
a single NixOS machine or a ProxmoX hypervisor.

• Depending on the targeted run-time environment, deployment may involve
NixOps4 or OpenTofu as an orchestrator.

• We further provide demo front-end for configuring applications and
configuring run-time backends.

To ensure reproducibility, all software will be packaged with Nix.

To reach our goals, we aim to implement the following interactions.

The used legend is as follows:

• Circle: actor
• Angled box: type
• Rectangle: value
• Rounded box: function
• Diamond: state
• Arrow: points towards dependant

For further info on components see the glossary.

3

https://proxmox.com/
https://github.com/SaumonNet/proxmox-nixos
https://github.com/SaumonNet/proxmox-nixos
https://garagehq.deuxfleurs.fr/
https://nixops.dev
https://opentofu.org/


Configuration data flow

This data flow diagram refines how a deployment is obtained from an operator’s
application configuration and a hosting provider’s runtime setup.

An application module specifies operator-facing application options, and a
configuration mapping which determines the application’s underlying imple-
mentation. Application modules can be supplied by external developers, which
would curate application modules against that interface.

For its runtime setup, a hosting provider has to supply a resource mapping
that would take their self-declared provider configuration (which determines
the available resources) and the output of an application’s resource mapping
(which determine resource requirements) and produce a configuration. This
configuration ships with a mechanism to be deployed to the infrastructure (which

4



is described by the environment, and features the required resources), where it
will accumulate application state.

Applications and runtime environments thus interface through resources, the
properties of which are curated by Fediversity maintainers.

Service portability

The process of migrating one’s applications to a different host encompasses:

1. Domain registration: involves a (manual) update of DNS records at the
registrar

2. Deploy applications: using the reproducible configuration module
3. Copy application data:

• Run back-up/restore scripts
• Run application-specific migration scripts, to e.g. reconfigure connec-

tions/URLs

5



Data model

Whereas the bulk of our configuration logic is covered in the configuration schema,
implemented here and tested here, our reference front-end applications will store
data. The data model design for the configuration front-end needed support
the desired functionality is as follows, using the crow’s foot notation to denote
cardinality:

Host architecture

Whereas the core abstraction in Fediversity is a NixOS configuration module,
a more full-fledged example architecture of the web host use-case we aim to
support as part of our exploitation would be as follows, where virtual machines
in question run Fediversity to offer our selected applications:

6

https://git.fediversity.eu/Fediversity/Fediversity/src/branch/main/deployment/data-model.nix
https://git.fediversity.eu/Fediversity/Fediversity/src/branch/main/deployment/data-model-test.nix


CI / CD

In our simplest set-up, continuous integration and continuous deployment
pipelines are handled using Forgejo’s built-in runner, with relevant secrets
handled using Forgejo secrets. Jobs we handle using CI include linting, format-
ting, testing, and a periodic life-cycle management job to keep our dependencies
up-to-date. In a future iteration, we may make use of Gerrit to better manage
our review process for incoming merge requests.

7

https://code.forgejo.org/forgejo/runner
https://forgejo.org/docs/latest/developer/secrets/
https://gerrit.googlesource.com/

	Fediversity Implementation and planning
	Actors
	Glossary
	Technologies used
	Nix and NixOS
	Proxmox
	Garage

	Architecture
	Configuration data flow
	Service portability
	Data model
	Host architecture
	CI / CD



